Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Adrian Fowkes and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$
R factor $=0.029$
$w R$ factor $=0.046$
Data-to-parameter ratio $=25.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$\mathrm{Bis}($ guanidinium $)$ diaquapentakis(nitrato- $\kappa^{2} O, O^{\prime}$)lanthanum

The title compound, $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, contains a network of guanidinium cations and the previously unseen diaquapentakis(nitrato)lanthanum dianion, in which 12 O atoms surround La in a distorted icosahedral arrangement. A network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to consolidate the crystal packing, resulting in a threedimensional network. The La cation, one N atom and one O atom occupy a twofold axis.

Comment

The title compound, (I) (Fig. 1), contains a new lanthanum/ nitrate/water complex anion. The La^{3+} cation, which occupies a twofold symmetry axis, is surrounded by five O, O^{\prime}-bidentate nitrate groups [mean $\mathrm{La}-\mathrm{O}=2.693$ (3) \AA] and two water molecules (Table 1). The resulting O_{12} grouping (Fig. 2) surrounding the La atom is a distorted icosahedron. As expected, the icosahedral O..O contacts associated with the nitrate ions [2.149 (2)-2.1627 (19) \AA] are much shorter than the other contacts $(\mathrm{O} \cdots \mathrm{O}>2.8 \AA)$. Atoms $\mathrm{O} 1, \mathrm{O} 4, \mathrm{O} 7, \mathrm{O}^{\mathrm{i}}$ and O6 ${ }^{\text {i }}$ [symmetry code: (i) $-x, y, \frac{1}{2}-z$] are approximately coplanar (r.m.s. deviation from the mean plane $=0.074 \AA$) and the symmetry-generated set $\mathrm{O} 3 / \mathrm{O} 6 / \mathrm{O} 1^{\mathrm{i}} / \mathrm{O} 4^{\mathrm{i}} / \mathrm{O} 7^{\mathrm{i}}$ have the same r.m.s. deviation. The La cation is displaced by 0.9924 (7) \AA from each set of five O atoms. The dihedral angle between the two sets of O atoms is 0.91 (2) ${ }^{\circ}$. The propeller-shaped guanidinium species in (I) is unexceptional, with a typical mean C N bond length of 1.314 (4) \AA, indicating that the usual model of electronic delocalization (Harrison, 2003), leading to a CN bond order of 1.33 , is applicable here.

As well as Coulombic and van der Waals forces, the component species in (I) interact by way of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds link adjacent $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}\right]^{2-}$ anions into an infinite (001) sheet (Fig. 3). The guanidinium cations crosslink the (001)

Received 5 October 2004 Accepted 7 October 2004 Online 16 October 2004

The component ions of (I) (40% displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radius). [Symmetry code: (i) $-x, y$, $\frac{1}{2}-z$.]

Figure 2

The LaO_{12} icosahedron in (I), with $\mathrm{O} \cdots \mathrm{O}$ contacts shown as solid lines. [Symmetry code: (i) $-x, y, \frac{1}{2}-z$.]

Figure 3

Detail of a hydrogen-bonded (dotted lines) anionic sheet in (I). [Symmetry codes as in Table 2; in addition, (v) $x, 1+y, z$.]

Figure 4

A [010] projection of the unit-cell packing in (I).
anionic sheets into a three-dimensional network (Fig. 4), with mean $\mathrm{H} \cdots \mathrm{O}, \mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ values of $2.14 \AA$, 2.973 (5) \AA and 162°, respectively. The guanidinium N4-H3 vertex does not participate in hydrogen bonds.

La /nitrate/water anions related to the $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NO}_{3}\right)_{5}\right]^{2-}$ species seen in (I) include $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right)_{5}\right]^{2-}$ (Evans et al., 2002) and a number of examples of the hexakis(nitrato) $\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{6}\right]^{3-}$ species (Cui et al., 1999; Drew et al., 2000). The $\left[\mathrm{La}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{NO}_{3}\right)_{6}\right]$ dinuclear cluster contains bridging nitrate groups (Weakley, 1982).

Experimental

The following solutions were mixed at 293 K in a Petri dish, resulting in a clear solution: 5 ml of 0.1 M guanidinium hydrochloride $\left(\left[\mathrm{CH}_{6} \mathrm{~N}_{3}\right]^{+} \mathrm{Cl}^{-}\right), 5 \mathrm{ml}$ of 0.1 M lanthanum nitrate, and 1 ml of 1 M HCl . Colourless block-like crystals of (I) grew over the course of a few days as the water evaporated at 293 K .

Crystal data

$\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{La}\left(\mathrm{NO}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=605.16$
Monoclinic, $C 2 / c$
$a=10.9918$ (6) A
$b=9.0820(5) \AA$
$c=20.5555(11) \AA$
$\beta=94.500(1)^{\circ}$
$V=2045.68(19) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.707, T_{\max }=0.844$
9927 measured reflections

$D_{x}=1.965 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3673
reflections
$\theta=2.9-28.5^{\circ}$
$\mu=2.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless

$$
0.17 \times 0.14 \times 0.08 \mathrm{~mm}
$$

$$
\begin{aligned}
& 3682 \text { independent reflections } \\
& 3094 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=32.5^{\circ} \\
& h=-16 \rightarrow 15 \\
& k=-13 \rightarrow 12 \\
& l=-30 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.046$
$S=0.91$
3682 reflections
142 parameters

142 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0157 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.15 \mathrm{e}_{\mathrm{m}} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

La1-O9	$2.5409(12)$	La1-O6	$2.7174(15)$
La1-O3	$2.6112(14)$	La1-O4	$2.7254(14)$
La1-O1	$2.6603(14)$	La1-O7	$2.7562(16)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {i }}$	0.81	2.13	2.9157 (18)	163
$\mathrm{O} 9-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.80	2.14	2.9060 (18)	161
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 8^{\text {iii }}$	0.86	2.26	3.069 (3)	156
N5-H5 \cdots O8	0.86	2.06	2.908 (3)	169
N5-H6 $\cdots \mathrm{O}^{\text {iv }}$	0.86	2.02	2.863 (3)	166
N6-H7 . . ${ }^{\text {7 }}$	0.86	2.22	3.037 (3)	159
N6-H8 . ${ }^{\text {O }} 6^{\text {iii }}$	0.86	2.16	2.989 (2)	161

The water H atoms were located in a difference map and refined as riding on O 9 in their as-found relative positions. The $\mathrm{N}-\mathrm{H} \mathrm{H}$ atoms were placed in idealized locations ($\mathrm{N}-\mathrm{H}=0.86 \AA$) and refined as riding. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom) was applied in all cases. The maximum difference peak is at La1 and the largest difference hole is $0.56 \AA$ from La1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

AF thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Cui, Y., Zheng, F., Chen, J. \& Huang, J. (1999). Acta Cryst. C55, IUC9900065.
Drew, M. G. B., Iveson, P. B., Hudson, M. J., Liljenzin, J. O., Spjuth, L., Cordier, P.-Y., Enarsson, A., Hill, C. \& Madic, C. (2000). J. Chem. Soc. Dalton Trans. pp. 821-830.
Evans, D. J., Junk, P. C. \& Smith, M. K. (2002). New J. Chem. 26, 1043-1048.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harrison, W. T. A. (2003). Acta Cryst. E59, o769-o770.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Weakley, T. J. R. (1982). Inorg. Chem. Acta, 63, 161-168.

